Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
3D Printing in Medicine ; : 149-178, 2022.
Article in English | Scopus | ID: covidwho-2248508

ABSTRACT

3D printing is one of the fundamental technologies that significantly contributes to medicine personalization. Unlike the general medical approach, personalized medicine suggests more effective and patient-oriented treatments at different levels, which accounts for specific needs and characteristics of the patient. Furthermore, healthcare providers can significantly increase their efficiency by customizing treatment strategies, predicting treatment outcomes more precisely, and minimizing the risks of failures. Main medical applications that involve 3D bioprinting technology can be arranged into three categories: (1) 3D bioprinting of vascularized organs and tissues in vitro, (2) in situ bioprinting and, (3) 3D in vitro tissue models. Various constructs have already been successfully produced using 3D technology, including printing of cells, blood vessels, cartilages, bones, bandages, corneas, liver tissues for drug tests, and customized drugs. The recent advances in 3D human tissues and organs modeling allowed numerous studies on infection's mechanisms and effects of different therapeutic agents and drugs on 3D-printed human tissues. For the past decade, several successful cases of fabrication functional organs using 3D printing technologies have been reported. In parallel with in vitro 3D bioprinting technology, in situ 3D printing directly onto the defect site is developing rapidly. Recent studies have demonstrated that in situ 3D printing provides a powerful technological solution, which is expected to become a routine in various clinical applications and personalized medical treatments. © 2023 Elsevier Ltd. All rights reserved.

2.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: covidwho-2256018

ABSTRACT

In December 2019, COVID-19 emerged in China, and in January 2020, the World Health Organization declared a state of international emergency. Within this context, there is a significant search for new drugs to fight the disease and a need for in vitro models for preclinical drug tests. This study aims to develop a 3D lung model. For the execution, Wharton's jelly mesenchymal stem cells (WJ-MSC) were isolated and characterized through flow cytometry and trilineage differentiation. For pulmonary differentiation, the cells were seeded in plates coated with natural functional biopolymer matrix as membrane until spheroid formation, and then the spheroids were cultured with differentiation inductors. The differentiated cells were characterized using immunocytochemistry and RT-PCR, confirming the presence of alveolar type I and II, ciliated, and goblet cells. Then, 3D bioprinting was performed with a sodium alginate and gelatin bioink in an extrusion-based 3D printer. The 3D structure was analyzed, confirming cell viability with a live/dead assay and the expression of lung markers with immunocytochemistry. The results showed that the differentiation of WJ-MSC into lung cells was successful, as well as the bioprinting of these cells in a 3D structure, a promising alternative for in vitro drug testing.


Subject(s)
Bioprinting , COVID-19 , Wharton Jelly , Humans , COVID-19/metabolism , Cells, Cultured , Cell Differentiation , Printing, Three-Dimensional , Tissue Engineering
3.
Progress in Additive Manufacturing ; 2022.
Article in English | Web of Science | ID: covidwho-2175384

ABSTRACT

The exponential rise of healthcare problems like human aging and road traffic accidents have developed an intrinsic challenge to biomedical sectors concerning the arrangement of patient-specific biomedical products. The additively manufactured implants and scaffolds have captured global attention over the last two decades concerning their printing quality and ease of manufacturing. However, the inherent challenges associated with additive manufacturing (AM) technologies, namely process selection, level of complexity, printing speed, resolution, biomaterial choice, and consumed energy, still pose several limitations on their use. Recently, the whole world has faced severe supply chain disruptions of personal protective equipment and basic medical facilities due to a respiratory disease known as the coronavirus (COVID-19). In this regard, local and global AM manufacturers have printed biomedical products to level the supply-demand equation. The potential of AM technologies for biomedical applications before, during, and post-COVID-19 pandemic alongwith its relation to the industry 4.0 (I4.0) concept is discussed herein. Moreover, additive manufacturing technologies are studied in this work concerning their working principle, classification, materials, processing variables, output responses, merits, challenges, and biomedical applications. Different factors affecting the sustainable performance in AM for biomedical applications are discussed with more focus on the comparative examination of consumed energy to determine which process is more sustainable. The recent advancements in the field like 4D printing and 5D printing are useful for the successful implementation of I4.0 to combat any future pandemic scenario. The potential of hybrid printing, multi-materials printing, and printing with smart materials, has been identified as hot research areas to produce scaffolds and implants in regenerative medicine, tissue engineering, and orthopedic implants.

4.
Front Pharmacol ; 13: 1033043, 2022.
Article in English | MEDLINE | ID: covidwho-2199111

ABSTRACT

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.

5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2066117

ABSTRACT

Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.


Subject(s)
Bioprinting , Blood Substitutes , Alginates , Blood Vessel Prosthesis , Gelatin , Hydrogels/pharmacology , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
6.
Int J Bioprint ; 8(4): 616, 2022.
Article in English | MEDLINE | ID: covidwho-2056642

ABSTRACT

While the tension of COVID-19 is still increasing, patients who recovered from the infection are facing life-threatening consequences such as multiple organ failure due to the presence of angiotensin-converting enzyme 2 receptor in different organs. Among all the complications, death caused by respiratory failure is the most common because severe acute respiratory syndrome coronavirus 2 infects lung's type II epithelial, mucociliary, and goblet cells that eventually cause pneumonia and acute respiratory distress syndrome, which are responsible for the irreversible lung damage. Risk factors, such as age, comorbidities, diet, and lifestyle, are associated with disease severity. This paper reviews the potential of three-dimensional bioprinting in printing an efficient organ for replacement by evaluating the patient's condition.

7.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1957412

ABSTRACT

Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent. This review summarizes the basic principles of 3D cell culture approaches and emphasizes different 3D techniques such as hydrogels, spheroids, microfluidic devices, organoids, and 3D bioprinting methods. Besides the progress made so far in 3D cell culture systems, the article emphasizes the various challenges associated with these models and their potential role in drug repositioning, including perspectives from the COVID-19 pandemic.

8.
Adv Biol (Weinh) ; 6(8): e2200002, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1825810

ABSTRACT

The effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection. Aiming to increase the specificity to murine cells, SARS-CoV-2 is mouse-adapted (MA-SARS-CoV-2) in vitro, in a protocol first reported here. MA-SARS-CoV-2 reveals mutations located at the Orf1a and Orf3a domains and is evolutionarily closer to the original Wuhan SARS-CoV-2 strain than SARS-CoV-2 used for adaptation. Remarkably, MA-SARS-CoV-2 shows high specificity to murine cells, which present distinct responses when cultured in 2D and 3D systems, regarding cell morphology, neuroinflammation, and virus titration. MA-SARS-CoV-2 represents a valuable tool in studies using animal models, and the 3D neural-like tissue serves as a powerful in vitro platform for modeling brain infection, contributing to the development of antivirals and new treatments for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Brain , COVID-19/complications , Humans , Mice , Neurons , Post-Acute COVID-19 Syndrome
9.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1785725

ABSTRACT

Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.


Subject(s)
Bioprinting , Neoplasms , Bioprinting/methods , Humans , Hydrogels , Precision Medicine , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds , Tumor Microenvironment
10.
View ; 3(2), 2022.
Article in English | ProQuest Central | ID: covidwho-1750443

ABSTRACT

Skin is exposed to a variety of potential stressors and stimulators that may impact homeostasis, healing, tumor development, inflammation, and irritation. As such it is important to understand the impact that these stimuli have on skin health and function, and to develop therapeutic interventions. Animal experiments have been the gold standard for testing the safety and efficacy of therapeutics and observing disease pathology for centuries. However, complex ethics, costs, time consumption, and interspecies variation limit the transferability of results to humans and reduce their repeatability and reliability. Furthermore, traditional 2D cell studies are not representative of human tissue. Skin tissue is a dynamic environment, and when cells are isolated in unphysiologically stiff, static petri dishes their behavior, and phenotypic expression is altered. Increasingly complex in vitro models of human skin, including organoids, 3D bioprinting, and skin‐on‐a‐chip platforms, present the opportunity to gain insight into how stressors affect tissue at a cellular level in a controlled and repeatable environment. This insight can be leveraged to further understand pathological skin conditions and better formulate and validate drugs and therapeutics. Here, we will discuss the application of in vitro skin modeling to investigating the effects of mechanical, electromagnetic, and chemical stressors on skin.

11.
Regen Ther ; 18: 447-456, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1440332

ABSTRACT

Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.

12.
Pharmaceutics ; 13(6)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1285401

ABSTRACT

The cell-based approach in gene therapy arises as a promising strategy to provide safe, targeted, and efficient gene delivery. Owing to their unique features, as homing and tumor-tropism, mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in gene therapy. Nevertheless, non-viral transfer of nucleic acids into MSCs remains limited due to various factors related to the main stakeholders of the process (e.g., nucleic acids, carriers, or cells). In this review, we have summarized the main types of nucleic acids used to transfect MSCs, the pros and cons, and applications of each. Then, we have emphasized on the most efficient lipid-based carriers for nucleic acids to MSCs, their main features, and some of their applications. While a myriad of studies have demonstrated the therapeutic potential for engineered MSCs therapy in various illnesses, optimization for clinical use is an ongoing challenge. On the way of improvement, genetically modified MSCs have been combined with various novel techniques and tools (e.g., exosomes, spheroids, 3D-Bioprinting, etc.,) aiming for more efficient and safe applications in biomedicine.

13.
Polymers (Basel) ; 13(3)2021 Jan 24.
Article in English | MEDLINE | ID: covidwho-1045380

ABSTRACT

Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs to be established expeditiously for the identification of appropriate therapeutic agents. Such models can be of great help in validating the pathological behavior of pathogens and therapeutic agents. Recently, in vitro models representing human organs and tissues and biological functions have been developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest achievements and future aspects of the use of 3D bioprinting for in vitro modeling.

14.
ACS Biomater Sci Eng ; 6(12): 6540-6555, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-1023821

ABSTRACT

Given the various viral outbreaks in the 21st century, specifically the present pandemic situation arising from SARS-CoV-2 or the coronavirus, of unknown magnitude, there is an unmet clinical need to develop effective therapeutic and diagnostic strategies to combat this infectious disease worldwide. To develop precise anticoronavirus drugs and prophylactics, tissue engineering and biomaterial research strategies can serve as a suitable alternative to the conventional treatment options. Therefore, in this Review, we have highlighted various tissue engineering-based diagnostic systems for SARS-CoV-2 and suggested how these strategies involving organ-on-a-chip, organoids, 3D bioprinting, and advanced bioreactor models can be employed to develop in vitro human tissue models, for more efficient diagnosis, drug/vaccine development, and focusing on the need for patient-specific therapy. We believe that combining the basics of virology with tissue engineering techniques can help the researchers to understand the molecular mechanism underlying viral infection, which is critical for effective drug design. In addition, it can also serve to be a suitable platform for drug testing and delivery of small molecules that can lead to therapeutic tools in this dreaded pandemic situation. Additionally, we have also discussed the essential biomaterial properties which polarize the immune system, including dendritic cells and macrophages, toward their inflammatory phenotype, which can thus serve as a reference for exhibiting the role of biomaterial in influencing the adaptive immune response involving B and T lymphocytes to foster a regenerative tissue microenvironment. The situation arising from SARS-CoV-2 poses a challenge to scientists from almost all disciplines, and we feel that tissue engineers can thus provide new translational opportunities in this dreadful pandemic situation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 Vaccines/pharmacology , COVID-19/diagnosis , Pandemics/prevention & control , SARS-CoV-2/immunology , Adaptive Immunity , Animals , COVID-19/prevention & control , Drug Delivery Systems , Drug Liberation , Humans , Models, Animal , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL